
2 Scraper #1: Start
scraping in 5 minutes

You can write a very basic scraper by using Google Drive,
selecting Create>Spreadsheet, and adapting this formula
- it doesn’t matter where you type it:

=ImportHTML("ENTER THE URL HERE", "table", 1)

This formula will go to the URL you specify, look for a
table, and pull the first one into your spreadsheet.

Scraper #1: Start scraping in 5 minutes 8

If you’re using a Portuguese, Spanish or
German version of Google Docs - or have
any problems with the formula - use semi
colons instead of commas. We’re using com-
mas here because this convention will con-
tinuewhenwe get into programming in later
chapters.

Let’s imagine it’s the day after a big horse race where
two horses died, and you want some context. Or let’s
say there’s a topical story relating to prisons and you
want to get a global overview of the field: you could
use this formula by typing it into the first cell of an
empty Google Docs spreadsheet and replacing ENTER
THE URL HERE with http://www.horsedeathwatch.com
or http://en.wikipedia.org/wiki/List_of_prisons. Try it and
see what happens. It should look like this:

=ImportHTML("http://en.wikipedia.org/wiki/List_-

of_prisons", "table", 1)

Don’t copy and paste this - it’s always better
to type directly to avoid problems with hy-
phenation and curly quotation marks, etc.

After a moment, the spreadsheet should start to pull in
data from the first table on that webpage.

So, you’ve written a scraper. It’s a very basic one, but
by understanding how it works and building on it you
can start to make more and more ambitious scrapers with
different languages and tools.

Scraper #1: Start scraping in 5 minutes 9

How it works: functions and
parameters

=ImportHTML("http://en.wikipedia.org/wiki/List_of_-

prisons", "table", 1)

The scraping formula above has two core ingredients:
a function, and parameters:

• importHTML is the function. Functions (as you
might expect) do things. According to Google Docs’
Help pages¹ this one “imports the data in a particular
table or list from an HTML page”

• Everything within the parentheses (brackets) are the
parameters. Parameters are the ingredients that the
function needs in order to work. In this case, there
are three: a URL, the word “table”, and a number 1.

You can use different functions in scraping to tackle
different problems, or achieve different results. Google
Docs, for example, also has functions called importXML,
importFeed and importData - some of which we’ll cover
later. And if you’re writing scrapers with languages like
Python, Ruby or PHP you can create your own functions
that extract particular pieces of data from a page or PDF.

¹http://support.google.com/docs/bin/answer.py?hl=en&answer=155182

http://support.google.com/docs/bin/answer.py?hl=en&answer=155182
http://support.google.com/docs/bin/answer.py?hl=en&answer=155182
http://support.google.com/docs/bin/answer.py?hl=en&answer=155182

Scraper #1: Start scraping in 5 minutes 10

What are the parameters? Strings
and indexes

Back to the formula:
=ImportHTML("http://en.wikipedia.org/wiki/List_-

of_prisons", "table", 1)

In addition to the function and parameters, it’s impor-
tant to explain some other things you should notice:

• Firstly, the = sign at the start. This tells Google Docs
that this is a formula, rather than a simple number
or text entry

• Secondly, notice that two of the three parameters
use straight quotation marks: the URL, and “table”.
This is because they are strings: strings are basically
words, phrases or any other collection (i.e. string) of
characters. The computer treats these differently to
other types of information, such as numbers, dates,
or cell references - we’ll come across these again
later.

• The third parameter does not use quotation marks,
because it is a number. In fact, in this case it’s a
number with a particular meaning: an index - the
position of the table we’re looking for (first, second,
third, etc)

Knowing these things helps both in avoiding mistakes
(for example, if you omit a quotation mark or use curly
quotation marks it won’t work) and in adapting a scraper…

Scraper #1: Start scraping in 5 minutes 11

For example, perhaps the table you got wasn’t the one
you wanted. Try replacing the number 1 in your formula
with a number 2. This should now scrape the second table
(in Google Docs an index starts from 1).

Knowing to search for information (often called ‘documentation’)
on a function is important too. The page on Google Docs
Help², for example, explains that we can use “list” instead
of “table” if you wanted to grab a list from the webpage.

So try that, and see what happens (make sure the
webpage has a list).

=ImportHTML("http://en.wikipedia.org/wiki/List_-

of_prisons", "list", 1)

You can also try replacing either string with a cell
reference. For example:

=ImportHTML(A2, "list", 1)

And then in cell A2 type or paste:
http://en.wikipedia.org/wiki/List_of_prisons

Notice that you don’t need quotation marks around the
URL if it’s in another cell.

Using cell references like this makes it easier to change
your formula: instead of having to edit the whole formula
you only have to change the value of the cell that it’s
drawing from.

For examples of scrapers that do all of the above, see
this example³.

²http://support.google.com/docs/bin/answer.py?hl=en&answer=155182
³https://docs.google.com/spreadsheet/ccc?key=

0ApTo6f5Yj1iJdDBSb0FPQm9jUjYzdjcyNWlUTjVYMFE

http://support.google.com/docs/bin/answer.py?hl=en&answer=155182
http://support.google.com/docs/bin/answer.py?hl=en&answer=155182
https://docs.google.com/spreadsheet/ccc?key=0ApTo6f5Yj1iJdDBSb0FPQm9jUjYzdjcyNWlUTjVYMFE
https://docs.google.com/spreadsheet/ccc?key=0ApTo6f5Yj1iJdDBSb0FPQm9jUjYzdjcyNWlUTjVYMFE
http://support.google.com/docs/bin/answer.py?hl=en&answer=155182
https://docs.google.com/spreadsheet/ccc?key=0ApTo6f5Yj1iJdDBSb0FPQm9jUjYzdjcyNWlUTjVYMFE
https://docs.google.com/spreadsheet/ccc?key=0ApTo6f5Yj1iJdDBSb0FPQm9jUjYzdjcyNWlUTjVYMFE

Scraper #1: Start scraping in 5 minutes 12

Tables and lists?
There’s one final element in this scraper that deserves some
further exploration: what it means by “table” or “list”.

When we say “table” or “list” we are specifically asking
it to look for a HTML tag in the code of the webpage. You
can - and should - do this yourself…

Look at the raw HTML of your webpage by right-
clicking on the webpage and selecting View Page Source,
or using the shortcuts CTRL+U (Windows) and CMD+U
(Mac) in Firefox, or a plugin like Firebug. You can also view
it by selecting Tools > Web Developer > Page Source in
Firefox or View > Developer > View Source in Chrome.
Note: for viewing source HTML, Firefox and Chrome are
generally better set up.

You’ll now see the HTML. Use Edit>Find on your
browser (or CTRL+F) to search for <table

When =importHTML looks for a table, this is what it
looks for - and it will grab everything between <table> and
</table> (which marks the end of the table)

With “list”, =importHTML is looking for the tags
(unordered list - normally displayed as bullet lists) or
(ordered list - normally displayed as numbered lists). The
end of each list is indicated by either or .

Both tables and lists will include other tags, such as
 (list item), <tr> (table row) and <td> (table data) which
add further structure - and that’s what Google Docs uses to
decide how to organise that data across rows and columns
- but you don’t need to worry about them.

Scraper #1: Start scraping in 5 minutes 13

How do you know what index number to use? Well,
there are two ways: you can look at the raw HTML and
count howmany tables there are - andwhich one you need.
Or you can just use trial and error, beginning with 1, and
going up until it grabs the table you want. That’s normally
quicker.

Trial and error, by the way, is a common way of
learning in scraping - it’s quite typical not to get things
right first time, and you shouldn’t be disheartened if things
go wrong at first.

Don’t expect yourself to know everything there is
to know about programming: half the fun is solving the
inevitable problems that arise, and half the skill is in the
techniques that you use to solve them (some of which I’ll
cover here), and learning along the way.

..

Scraping tip #1: Finding out about
functions
We’ve already mentioned one of those problem-
solving techniques, which is to look for the Help
pages relating to the function you’re using - what’s
often called the ‘documentation’.

When you come across a function (pretty much
any word that comes after the = sign) it’s always a
good idea to Google it. Google Docs has extensive
help pages - documentation - that explain what the
function does, as well as discussion around particular
questions.

Scraper #1: Start scraping in 5 minutes 14

..

Likewise, as you explore more powerful scrapers
such as those hosted on Scraperwiki or Github,
search for ‘documentation’ and the name of the
function to find out more about how it works.

Recap
Before we move on, here’s a summary of what we’ve
covered:

• Functions do things…
• they need ingredients to do this, supplied in param-
eters

• There are different kinds of parameters: strings, for
example, are collections of characters, indicated by
quotation marks

• and an index is a position indicated by a number,
such as first (1), second (2) and so on.

• The strings “table” and “list” in this formula refer to
particular HTML tags in the code underlying a page

Scraper #1: Start scraping in 5 minutes 15

Although this is described as a ‘scraper’
the results only exist as long as the page
does. The advantage of this is that your
spreadsheet will update every time the page
does (you can set the spreadsheet to notify
you by email whenever it updates by going
to Tools>Notification rules in the Google
spreadsheet and selecting how often you
want to be updated of changes).

The disadvantage is that if the webpage
disappears, so will your data. So it’s a good
idea to keep a static copy of that data in
case the webpage is taken down or changed.
You can do this by selecting all the cells
and clicking on Edit>Copy then going to a
new spreadsheet and clicking on Edit>Paste
values only

We’ll come back to these concepts again and again,
beginning with HTML. But before you do that - try this…

Tests
To reinforce what you’ve just learned - or to test you’ve
learned it at all - here are some tasks to get you solving
problems creatively:

• Let’s say you need a list of towns in Hungary (this
was an actual task I needed to undertake for a story).
What formula would you write to scrape the first ta-

Scraper #1: Start scraping in 5 minutes 16

ble on this page: http://en.wikipedia.org/wiki/List_-
of_cities_and_towns_in_Hungary

• To make things easier for yourself, how can you
change the formula so it uses cell references for each
of the three parameters? (Make sure each cell has the
relevant parameter in it)

• How can you change one of those cells so that the
formula scrapes the second table?

• How can you change it so it scrapes a list instead?
• Look at the source code for the page you’re scraping -
try using the Find command (CTRL+F) to count the
tables and work out which one you need to scrape
the table of smaller cities - adapt your formula so it
scrapes that

• Try to explain what a parameter is (tip: choose
someone who isn’t going to run away screaming)

• Try to explain what an index is
• Try to explain what a string is
• Look for the documentation on related functions
like importData and importFeed - can you get those
working?

Once you’re happy that you’ve nailed these core con-
cepts, it’s time to move on to Scraper #2…

3 Scraper #2: What
happens when the
data isn’t in a table?

More often than not, the data that you want won’t be
presented in a handy table or list on a single webpage, so
you’ll need a more powerful scraper. In this exercise we’re
going to explore the concept of structure: why it’s central
in scraping, and how to find it.

And we’ll do it with another Google Docs function:
importXML

ImportXML - as you’d imagine - is similar to im-
portHTML. It is designed for grabbing information from
a webpage based on the parameters you give it.

But it is able to look for much more than a “table” or a
“list”, whichmeans we can look for other types of structure.

Scraper #2: What happens when the data isn’t in a table? 18

Strong structure: XML
At its most basic, importXML allows us to scrape XML
pages. XML is a heavily structured format - much more
structured than HTML.

It is often used to describe products, people or objects
in a database. For example, XML data for books might look
like this:

<books>

<book>

<title>Online Journalism Handbook</title>

<author>Paul Bradshaw</author>

<author>Liisa Rohumaa</author>

</book>

<book>

<title>Magazine Editing (3rd

Edition)</title>

<author>John Morrish</author>

<author>Paul Bradshaw</author>

</book>

Scraper #2: What happens when the data isn’t in a table? 19

</books>

The category ‘books’ has a ‘book’ in it, and that book
has an ‘author’ and a ‘title’, and so on. It also has a second
book, with another title and author, and so on.

This ‘tree’ of information, with branches of different
types of information, may go down to deeper levels: we
could have ‘authors’ within book, which in turn has mul-
tiple ‘author’ entries, and so on.

Many browsers - such as Internet Explorer - struggle
to display an XML page, so if you try to view one it
sometimes tries to download it instead. For best results
try Chrome (which adds colour coding and other design
elements which make it easier to understand) or, failing
that, Firefox.

For a case study of how XML is provided by
one organisation - the IOC - and usedwithin
the newsroom, read The New York Times’s
Jacqui Maher’s article London Calling: win-
ning the data Olympics¹

Scraping XML
Let’s say you need a list of all the councils in England, and
it’s available as an XML file. Here’s an example of using
importXML in a Google Docs spreadsheet to scrape that
XML file:

¹http://source.mozillaopennews.org/en-US/learning/london-calling-
winning-data-olympics/

http://source.mozillaopennews.org/en-US/learning/london-calling-winning-data-olympics/
http://source.mozillaopennews.org/en-US/learning/london-calling-winning-data-olympics/
http://source.mozillaopennews.org/en-US/learning/london-calling-winning-data-olympics/
http://source.mozillaopennews.org/en-US/learning/london-calling-winning-data-olympics/

Scraper #2: What happens when the data isn’t in a table? 20

=importXML("http://openlylocal.com/councils.xml",

"councils/council")

Type this into any cell (save the spreadsheet first), press
Enter, and after a fewmoments you should see the sheet fill
with details of councils.

This function has similar parameters to importHTML
(see the previous chapter) - but only two of them: a URL,
and a query ("councils/council").

To see what it’s looking for, open the same webpage in
a browser that can handle XML well. In other words, stay
the hell away from Internet Explorer (as I say, Chrome is
particularly good with XML or, failing that, Firefox).

That URL, again, is http://openlylocal.com/councils.xml²
(how do you find this when wandering around the web?
Look for a link to ‘XML’ - in this case, at the bottom of
http://openlylocal.com/councils/³)

You will see that the page has a very clear structure:
starting with <councils> (ignore the type="array" bit),
which branches into a series of tags called <council>,
each of which in turn contains a series of tags: <address>,
<authority-type>, and so on.

You can tell that a tag is contained by another tag,
because it is indented after it. And you can collapse the
contents of a tag by clicking on the triangular arrow next
to it - so if you click on the triangular arrow next to the
first <council> you will see that there’s another one that
follows it.

²http://openlylocal.com/councils.xml
³http://openlylocal.com/councils/

http://openlylocal.com/councils.xml
http://openlylocal.com/councils/
http://openlylocal.com/councils.xml
http://openlylocal.com/councils/

Scraper #2: What happens when the data isn’t in a table? 21

An XML page as it looks in a browser such as Firefox or Chrome

So the query in our formula…
=importXML("http://openlylocal.com/councils.xml",

"councils/council")

…looks for each <council> tag within the <councils>
tag, and brings back the contents - each <council> in its
own row.

And because <council> has a number of tags within it,
each one of those is given its own column.

To show how you might customise this, try changing
it to be more specific as follows:

=importXML("http://openlylocal.com/councils.xml",

"councils/council/address")

Now it’s looking for the contents of <councils><council><address>
- so you’ll have a single column of just the addresses.

You could also be less fussy and adapt it as follows:

Scraper #2: What happens when the data isn’t in a table? 22

=importXML("http://openlylocal.com/councils.xml",

"councils")

…again, because <councils> contains a number of
<council> tags, each is put in its own column.

Finally, try adding an index to the end of your formula.
You’ll remember that an index indicates the position of
something. So in our first scraper we used the index 1 to
grab the first table. In the importXML formula the index is
added in square brackets, like so:

=importXML("http://openlylocal.com/councils.xml",

"councils/council[1]")

Try the formula above - then try using different num-
bers to see which <council> tag it grabs. We’ll cover
indexes more later.

Recap
Before we move on, here’s a summary of what we’ve
covered:

• XML is a structured language
• We can use structure in a language to ‘drill down’ to
particular elements, such as the contents of one tag
within another tag.

• We can also add an index to specify which indi-
vidual element we want, such as the first instance,
second, and so on.

But I’ve not shown you the importXML function be-
cause you’re likely to come across XML a lot (although it’s

Scraper #2: What happens when the data isn’t in a table? 23

perfect if you do). This function is even more useful when
you’re dealing with HTML pages, as we’ll see in the next
scraper…

Tests
Before that, however, it’s worth testing the knowledge
you’ve gained from this chapter and ways you might apply
it. Here are some tests to try:

• Adapt your =importXML formula so that it uses cell
references instead of strings - as you did in the last
chapter.

• Change the formula so that you just grab all the
names of each council (you’ll have to work out what
tag is used for those)

• Change it so you grab the 34th council in the list. I
know there’s no particular reason to do so. Do it just
because you can.

• Find some other XML sources and try to scrape
those. Here’s a tip: include filetype:xml in your
search (note that there’s no space after the colon) if
you’re using Google - e.g. 'NHS filetype:xml'

• Test yourself on drilling down through a tree of XML
tags, and on using indexes

• Sometimes XML is used to provide information to
Flash elements in webpages. In these cases try look-
ing at the source code for the webpage hosting the
Flash movie, and searching for ‘xml’ - if the movie is

Scraper #2: What happens when the data isn’t in a table? 24

pulling data from an xml file this is where you might
see what that file is. The linkwill probably be relative
(i.e. it begins with / rather than http://. In this case
add it to the site’s base URL - for example if the flash
page is http://bobswebsite.com/flashmovie and the
xml file address is /flashdata.xml then the full URL of
that file is probably http://bobswebsite.com/flashdata.xml
(we’ll cover relative and base URLs later in the book).
Look at that file using a browser which structures
the XML (Chrome is best). Secondly, use the Find
facility (CTRL+F) to find a piece of information you
want, and then see what tag it’s in. For more on this
search for information on ‘using XML in Flash’ -
there are some useful videos that walk you through
the process from the producer’s side.

• Read up on the language being used to describe
your query - it’s called Xpath. There is a tutorial on
w3schools.com⁴ but lots of other tutorials exist if that
doesn’t work for you. Get used to searching for the
one that suits you, rather than settling on the first
you find.

⁴http://www.w3schools.com/xpath/

http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/

4 Scraper #3: Looking
for structure in HTML

Now our story concerns the prevalence of unpaid intern-
ships in journalism. One useful source might be job ads.
To grab that data and put it in a spreadsheet, here’s an
example of one formula that uses importXML to scrape
vacancy details from the Gorkana jobs listing site:

=importXML("http://www.gorkanajobs.co.uk/jobs/journalist/",

"//div[@class='jobWrap']")

If you’re copying this formula, make sure
to check the quotation marks and inverted
commas are straight, not curly. Better still,
type it out yourself.

As you can see, this has some very complicated-looking
code in the second parameter, known as the query (//div[@class='jobWrap']).

Scraper #3: Looking for structure in HTML 26

And to understand this, we’ll need to take a detour into the
structure of HTML.

Detour: Introduction to HTML and
the LIFO rule

HTML (HyperTextMarkup Language) describes content on
webpages. The ‘markup’ bit means that it marks up content
in the same way as a sub-editor might mark up a reporter’s
copy.

It tells a browser whether a particular piece of content
is a header, a list, a link, a table, emphasised, and so on.
It tells you if something is an image, and what that image
represents. It can even say whether a section of content is a
piece of navigation, a header or footer, an article, product,
advert and so on.

HTML is written in tags contained within triangular
brackets, also known as chevrons, like this: <>. Here are
some examples:

• The <p> tag indicates a new paragraph.
• <h1> indicates a ‘first level’ header - or the most
important header of all. <h2> indicates a header
which is slightly less important, and a <h3> header
is less important, and so on, down to <h6>.

• indicates that a word is emphasised.
indicates a strong emphasis (bold).

• <img tells the browser to display an image, which can
be found at a location indicated by src="IMAGE URL

Scraper #3: Looking for structure in HTML 27

HERE">

And so on. If you see a tag that you don’t recognise,
Google it.

Think of a tag as pressing a button: when you see a
tag it is like pressing the ‘bold’ button on a Word
document¹. The tag (note the backslash at the
start) turns the formatting ‘off’.

The first tag is called an ‘opening’ tag, and the second
a ‘closing’ tag. This is quite important for scraping because
quite often it involves grabbing everything between an
opening and closing tag.

Because tags can contain other tags, HTML is supposed
to follow the LIFO rule: Last In First Out. In other words, if
you have more than one tag turned ‘on’ (open), you should
turn the last one off (close) first, like so:

<html>

<head>

</head>

<body>

<p>Words in

bold

¹http://html5doctor.com/i-b-em-strong-element/

http://html5doctor.com/i-b-em-strong-element/
http://html5doctor.com/i-b-em-strong-element/
http://html5doctor.com/i-b-em-strong-element/

Scraper #3: Looking for structure in HTML 28

</p>

</body>

</html>

In the above example, the tag is contained
(‘nested’) within the <p> tag, which is nested in the <body>
tag, which is nested in the <html> tag. Each has to be closed
in reverse order: was the last one in, so it should
be the first out, then <p>, <body> and finally <html>.

Oh, and they’re not always conveniently indented as
above, by the way.

Attributes and values
As well as the tag itself, we can find more information
about a particular piece of content by a tag’s attributes
and values, like so:

In this case:

• <a> is the tag
• href is the attribute
• “http://onlinejournalismblog.com” is the value. Val-
ues are normally contained within quotation marks.

You’ll notice that only the tag is turned off - with
- which is an easy way to identify it.

Here’s similar code for an image:

Scraper #3: Looking for structure in HTML 29

<img src="http://onlinejournalismblog.com/logo.png"

/>

Again, the tag tells us that this is an image, but
where does it come from? The src attribute directs us to the
source, and the ‘value’ of that source is “http://onlinejournalismblog.com/logo.png”.

<img is one of the few tags which are opened
and closed within the same tag: the back-
slash at the end of the image code above
closes it, so you don’t need a second,
tag. Other examples include the line break
tag,
 and the horizontal rule tag <hr

/>)

A single tag can have multiple attributes and values.
An image, for example, is likely to not only have a source,
but also a title, alternative description, and other values,
like so:

<img src="http://onlinejournalismblog.com/logo.png"

alt="OJB logo" title="Site logo" />

Classifying sections of content: div,
span, classes and ids

The use of attributes and values is particularly impor-
tant when it comes to the use of the <div> tag to di-
vide content into different sections and the 'id=' and
'class='attributes to classify them. These sections are
often what we want to scrape.

Scraper #3: Looking for structure in HTML 30

TheGorkana jobswebpage at http://www.gorkanajobs.co.uk/
jobs/journalist/², for example, uses the following HTML
tags to separate different types of content (to see these
right-click on the page and View Source, then search for
“<div” or another tag or attribute)

<div id="header" class="uk-site">

<div class="wrapper">

<div id="recruiters">

<div id="content">

<div class="content-wrapper">

<div class="content-inner">

<div id="primary">

<div class="fieldWrapper">

…in fact, there are around 150 different <div> tags on
that single page, which makes the class and id attributes
particularly useful, as they help us identify the specific
piece of content we want to scrape.

And class and id attributes are not just used for <div>
tags - the same page includes the following:

<li class="first">

<ul class="recruiterDetails">

<form class="contrastBg block box-innerSmall"

<label class="hideme"

<li id="job10598" class="regular">

<p class="apply">

<strong class="active">

<a class="page"

²http://www.gorkanajobs.co.uk/jobs/journalist/

http://www.gorkanajobs.co.uk/jobs/journalist/
http://www.gorkanajobs.co.uk/jobs/journalist/
http://www.gorkanajobs.co.uk/jobs/journalist/

Scraper #3: Looking for structure in HTML 31

If the data that we want to scrape is contained in one
of these tags, it again makes it much easier to specify, as we
explore in the next section.

Back to Scraper #3: Scraping a
<div> in a HTML webpage

Now that you know all this, you might be able to recognise
some elements in the query of our importXML scraper:

=importXML("http://www.gorkanajobs.co.uk/jobs/journalist/",

"//div[@class='jobWrap']")

You can see that it contains the words ‘div’ and ‘class’.
And, spotting that, you might also search the HTML of that
page for ‘jobWrap’ (try it). If you did, you would find this:

<div class="jobWrap">

This is the tag containing the content that the formula
scrapes (until you get to the next </div> tag). And once
you know that, you can customise the scraper to scrape the
contents of any div class without needing to understand the
slashes, brackets and@ signs that surround it - althoughwe
will come on to those.

This is often how coding operates: you find a piece of
code that already works, and adapt it to your own needs.
As you become more ambitious, or hit problems, you try to
find out solutions - but it’s a process of trial and error rather
than necessarily trying to learn everything you might need
to know, all at once.

So, how can we adapt this code? Here it is again - look
for the key words div, class and jobWrap:

Scraper #3: Looking for structure in HTML 32

=importXML("http://www.gorkanajobs.co.uk/jobs/journalist/",

"//div[@class='jobWrap']")

Now try to guess how you would change that code to
scrape the contents of this tag:

<div class="adBody">

The answer is that we just need to change the ‘jobWrap’
bit of the importXML scraper to reflect the different div
class, like so:

=importXML("http://www.gorkanajobs.co.uk/jobs/journalist/",

"//div[@class='adBody']")

You may be wondering whether the upper
and lower case letters matter. I could tell
you, but invariably the best answer is: try it,
and you’ll find out. Waiting for someone
else to tell you, or to find the answer some-
where else will just take you longer. Trial
and error is quicker and makes you a better
programmer - it’s a useful habit to acquire.

You can further adapt the scraper by using ‘id’ instead
of ‘class’ if that’s what your HTML uses, and replacing div
with whatever tag contains the information you want to
scrape. See if you can use that technique to adapt your
scraper to grab the contents of each of the following tags
listed previously:

<li class="first">

<ul class="recruiterDetails">

<form class="contrastBg block box-innerSmall"

Scraper #3: Looking for structure in HTML 33

<label class="hideme"

<li id="job10598" class="regular">

<p class="apply">

<strong class="active">

<a class="page"

Recap
We’ve covered quite a bit with this scraper, so here’s a
summary of the key principles:

• You can find structure in HTML if you look for
combinations of the tags, attributes and values
containing your data

• You can adapt an existing scraper to look for differ-
ent sections of different pages by changing elements
that you recognise

• Trial and error is an important technique in seeing
what works and what doesn’t - don’t be afraid of
making mistakes: you’re not going to break anything
(and if you’re worried about losing data, just create
a copy)

But trial and error is only the first step. When you hit
a barrier, it’s time to look at the documentation.

Tests
Once again, this book is not designed to show you how to
write just one scraper, but how to understand the processes

Scraper #3: Looking for structure in HTML 34

behind writing scrapers generally. So, try some of the
following challenges to see how you can adapt to different
situations:

• Adapt your =importXML formula so that it uses cell
references instead of strings - as you did in the last
two chapters.

• Change the formula for some of those other tags and
attributes that we listed. Why might some not work?

• Find a webpage that you check regularly and see
if you can use importXML instead to gather that
information.

• Set up an alert whenever the spreadsheet is updated
- go to Tools > Notification rules

• Look for more tutorials on using importXML to
gather data. Here is one example from distilled³.

³http://www.distilled.net/blog/distilled/guide-to-google-docs-importxml/

http://www.distilled.net/blog/distilled/guide-to-google-docs-importxml/
http://www.distilled.net/blog/distilled/guide-to-google-docs-importxml/

